已知数列{an}中,a0=2,a1=3,a2=6,且当n≥3时,有an=(n+4)an-1 -4nan-2 +(4n-8)an-3 .(1¬)设数列{bn }满足bn=an –nan-1,n属于N*,证明数列{bn+1-2bn}为等比数列,并求数列{bn}的通向公式;(2)记n×(n-1)×…×2

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/03 19:44:11
已知数列{an}中,a0=2,a1=3,a2=6,且当n≥3时,有an=(n+4)an-1 -4nan-2 +(4n-8)an-3 .(1¬)设数列{bn }满足bn=an –nan-1,n属于N*,证明数列{bn+1-2bn}为等比数列,并求数列{bn}的通向公式;(2)记n×(n-1)×…×2

已知数列{an}中,a0=2,a1=3,a2=6,且当n≥3时,有an=(n+4)an-1 -4nan-2 +(4n-8)an-3 .(1¬)设数列{bn }满足bn=an –nan-1,n属于N*,证明数列{bn+1-2bn}为等比数列,并求数列{bn}的通向公式;(2)记n×(n-1)×…×2
已知数列{an}中,a0=2,a1=3,a2=6,且当n≥3时,有an=(n+4)an-1 -4nan-2 +(4n-8)an-3 .
(1¬)设数列{bn }满足bn=an –nan-1,n属于N*,证明数列{bn+1-2bn}为等比数列,并求数列{bn}的通向公式;(2)记n×(n-1)×…×2×1=n!,求数列{nan}的前n项和Sn.
(a后的n或n-1,n-2,n-3均为下标)

已知数列{an}中,a0=2,a1=3,a2=6,且当n≥3时,有an=(n+4)an-1 -4nan-2 +(4n-8)an-3 .(1¬)设数列{bn }满足bn=an –nan-1,n属于N*,证明数列{bn+1-2bn}为等比数列,并求数列{bn}的通向公式;(2)记n×(n-1)×…×2
已知数列{an}中,a0=2,a1=3,a2=6;
且当n≥3时,有an=(n+4)a(n-1)-4na(n-2)+(4n-8)a(n-3);
(1).设数列{bn}满足bn=an-na(n-1),n∈N*;
证明数列{b(n+1)-2bn}为等比数列,并求数列{bn}的通项公式;
(2).记n×(n-1)×…×2×1=n!,求数列{nan}的前n项和Sn.
(1).b(n+1)-2bn=[a(n+1)-(n+1)an]-2[an–na(n-1)]=a(n+1)-(n+3)an+2na(n-1);
由an=(n+4)a(n-1)-4na(n-2)+(4n-8)a(n-3),可知:
a(n+1)=(n+5)an-4(n+1)a(n-1)+(4(n+1)-8)a(n-2);
则a(n+1)-(n+3)an+2na(n-1)=2[an-(n+2)a(n-1)+2(n-1)a(n-2)];
则b2-2b1=a2-4a1+2a0=6-4×3+2×2=-2;
即b(n+1)-2bn是以-2为首项,2为公比的等比数列,
则b(n+1)-2bn=(-2)×2^(n-1)=-2^n;
即b(n+1)-2bn=-2^n,则bn-2b(n-1)=-2^(n-1);
变形为:(bn/2^n)-(b(n-1)/2^(n-1))=-1/2;
由bn=an-na(n-1)可知:b1=a1-a0=3-2=1;则b1/2^1=1/2;
则bn/2^n是一个以1/2为首项,-1/2为公差的等差数列,
则bn/2^n=(1/2)+(n-1)×(-1/2),化简得bn=(2-n)×2^(n-1);
(2).由(1)知bn=an-na(n-1)=(2-n)×2^(n-1),
则变形为:an-2^n=n(a(n-1)-2^(n-1));设an-2^n=cn,则cn=nc(n-1);
则cn=nc(n-1)
=n(n-1)c(n-2)
=n(n-1)(n-2)c(n-3)
···
=n(n-1)(n-2)···×2×c1
=n!c1
c1=a1-2^1=3-2=1,则cn=n!,则an-2^n=n!,an=2^n+n!;
则nan的前n项和Sn为
Sn=∑(i=1→n)|(iai)=∑(i=1→n)|[i(2^i+i!)]
=∑(i=1→n)|[i×2^i+i×i!)]=∑(i=1→n)|(i×2^i)+∑(i=1→n)|(i×i!)
∑(i=1→n)|(i×2^i)=1×2^1+2×2^2+···+(n-1)×2^(n-1)+n×2^n,
2×∑(i=1→n)|(i×2^i)=1×2^2+2×2^3+···+(n-1)×2^n+n×2^(n+1),
∑(i=1→n)|(i×2^i)-2×∑(i=1→n)|(i×2^i)=-∑(i=1→n)|(i×2^i)
=(2^1+2^2+2^3+···+2^n)-n×2^(n+1)
=2^(n+1)-2-n×2^(n+1)=-(n-1)×2^(n+1)-2
则∑(i=1→n)|(i×2^i)=(n-1)×2^(n+1)+2;
∑(i=1→n)|(i×i!)=1×1!+2×2!+···+i×i!+···+(n-1)×(n-1)!+n×n!
则∑(i=1→n)|(i×i!)
=∑(i=1→n)|(i×i!)+∑(i=1→n)|(i!)-∑(i=1→n)|(i!)
=1×1!+2×2!+3×3!+···+i×i!+···+(n-1)×(n-1)!+n×n!
+1!+ 2!+ 3!+···+ i!+···+ (n-1)!+ n!
-(1!+ 2!+ 3!+···+ i!+···+ (n-1)!+ n!)
= 2!+3!+···+(i+1)!+···+(n-1)!+n!+(n+1)!
-(1!+2!+3!+··· +i!+···+(n-1)!+n!)
=(n+1)!-1
即∑(i=1→n)|(i×i!)=(n+1)!-1;
Sn=∑(i=1→n)|(i×2^i)+∑(i=1→n)|(i×i!)
=[(n-1)×2^(n+1)+2]+[(n+1)!-1]
化简,得Sn=(n-1)×2^(n+1)+(n+1)!+1.